For information only:

- Please note that this Appendix will be part of the next revision of AC61-10, *Pilot Licences and Ratings Type Ratings*.
- CAA expects to publish the new revision of AC61-10 in November 2024.
- Until then, this Appendix is provided to enable flight training providers to amend their training material before the update occurs in November. Please continue to use the current version of AC61-10 for the syllabus for Basic Turbine Knowledge rating (BTK) examinations.
- Please also note, there may be some minor changes and updates once the next revision of AC61-10 is published in November 2024, but we will endeavour to highlight any further changes at that time.

Table of Contents

Appendix II - Subject No 64 Basic Turbine Knowledge - Aeroplane	2
64.2 Basic Turbine Engine Theory	
64.4 Turbine Engine Types	
64.6 Turbine Engine Inlet Systems	
64.8 Turbine Engine Compressors	
64.10 Turbine Engine Combustion Section	4
64.12Turbine Engine Turbine Section	5
64.14Turbine Engine Exhaust Section	5
64.16Thrust Reversers	5
64.18Turbine Engine Fuel Systems	6
64.20 Turbine Engine Lubrication Systems	6
64.22 Turbine Engine Starting; Ignition; Relight; and Shutdown	7
64.24 Turbine Engine Air Cooling and Sealing	8
64.26 Turbine Engine Indicating and Instrumentation	8
64.28 Turbine Engine Performance	8

Appendix II - Subject No 64 Basic Turbine Knowledge - Aeroplane

Note: This syllabus is based on a "basic" level of knowledge applicable to the operation of a turbine engine, such as would be required by a pilot about to undergo training toward a type rating on their first turbine engine aeroplane.

Each subject has been given a subject number and each topic within that subject a topic number. These reference numbers will be used on 'knowledge deficiency reports' and will provide valuable feed back to the examination candidate.

Sub Topic Syllabus Item

64.2 Basic Turbine Engine Theory

64.2.2	Describe Newton's third law of motion and its practical application as it relates to the operation of a turbine engine.
64.2.4	Describe how gas undergoes changes in pressure, volume and temperature in accordance with Boyle's and Charles' Laws.
64.2.6	Describe each of the following and their application to turbine engine operation—
	(a) Bernoulli's Theorem

- (b) Brayton constant pressure cycle
- (c) the pressure-temperature cycle
- 64.2.8 Describe the changes to pressure, temperature and velocity of the gas flow as it passes through each section of a turbine engine.

64.4 Turbine Engine Types

04.	4 Turbine Eng	ine Types	
6	4.4.2	Compare the working cycle of a turbine engine and a piston engine.	
6	4.4.4	Describe the comparative advantages of turbine engines versus piston engines for aircraft propulsion.	
64.4.6 Describe the basic constructional arrangements of the following		Describe the basic constructional arrangements of the following engine types—	
		(a) turboprop	
		(b) turboshaft	
		(c) turbojet	
		(d) turbofan	
		(e) geared turbofan	
6	4.4.8	Describe the operating parameters and uses of each of the above engines.	
6	4.4.10	Identify engines that fall into either the thrust producing or torque producing category.	
6	4.4.12	Describe the following mechanical arrangements of a turbine engine—	

a) single-spool

- b) twin-spool
- c) triple-spool
- d) geared turbofan

64.6 Turbine Engine Inlet Systems

- 64.6.2 Describe the purpose, design and principles of operation of the engine inlet duct.
- 64.6.4 Describe and explain the purpose of a subsonic divergent inlet duct.

64.8 Turbine Engine Compressors

_				
	64.8.2	Describe the purpose of a compressor in a turbine engine.		
	64.8.4	Describe the basic principles of operation of centrifugal and axial flow compressors.		
	64.8.6	$\label{lem:comparative} \mbox{ Describe the comparative advantages of centrifugal and axial flow compressors.}$		
	64.8.8	Describe the merits of combined centrifugal and axial flow compressor combinations in turbine engines.		
	64.8.10	Describe typical compressor pressure ratios for the various types and configuration of turbine engine.		
	64.8.12	Define bypass ratio.		
	64.8.14	Describe the design of, and bypass ratios associated with, various bypass fans, from low bypass to ultra-high bypass.		
	64.8.16	Describe the purpose and function of:		
		a) impellers		
		b) inlet guide vanes (fixed and variable)		
		c) rotor blades		
		d) stator blades		
		e) variable stator blades		
		f) diffusers		
		g) bleed valves / bands		
	64.8.18	State the reasons why axial flow compressors have a higher number of stages than centrifugal compressors.		
	64.8.20	State the reason for the small pressure change per stage in an axial flow compressor.		
	64.8.22	State the reason for the decrease in size and increase in the number of compressor blades towards the outlet end of an axial flow compressor.		
	64.8.24	State the reasons for and advantages of multiple spool compressors.		

64.8.26	For various types of compressor arrangements identify; N1, N2, and N3 and state whether each is HP, IP or LP.		
64.8.28	Explain what is meant by compressor stall/compressor surge.		
64.8.30	State the conditions that are commonly known to produce compressor stall/surge with particular regard to—		
	a) compressor maintenance		
	b) blade damage		
	c) intake damage/restriction		
	d) engine handling/operation		
	e) fuel scheduling		
64.8.32	Describe the indications of a compressor stall/surge control devices.		
64.8.34	Describe the operation of the following stall/surge control devices—		
	(a) variable angle inlet guide and compressor vane systems		
	(b) bleed valves		
	(c) bleed bands		
64.10 Turbin	e Engine Combustion Section		
64.10.2	•		
64.10.4	Describe the constructional features and principles of operation of the following types of combustion chamber—		
	· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·		
	types of combustion chamber—		
	types of combustion chamber— (a) multiple can		
	types of combustion chamber— (a) multiple can (b) annular		
64.10.6	types of combustion chamber— (a) multiple can (b) annular (c) can annular		
64.10.6 64.10.8	types of combustion chamber— (a) multiple can (b) annular (c) can annular (d) reverse flow		
	types of combustion chamber— (a) multiple can (b) annular (c) can annular (d) reverse flow State the comparative advantages of each type of combustion chamber.		
	types of combustion chamber— (a) multiple can (b) annular (c) can annular (d) reverse flow State the comparative advantages of each type of combustion chamber. Describe the purpose of—		
	types of combustion chamber— (a) multiple can (b) annular (c) can annular (d) reverse flow State the comparative advantages of each type of combustion chamber. Describe the purpose of— (a) swirl chambers		
	types of combustion chamber— (a) multiple can (b) annular (c) can annular (d) reverse flow State the comparative advantages of each type of combustion chamber. Describe the purpose of— (a) swirl chambers (b) air shrouds		

64.10.12	State the percentages of airflow typically used for cooling and for combustion.		
64.10.14	Describe how flameout is caused and managed.		
64.12 Turbine E	Engine Turbine Section		
64.12.2	State the purpose and operation of the turbine section.		
64.12.4	Describe the function of the following turbine assembly components—		
	(a) casing and associated structures		
	(b) wheel/disc		
	(c) shafts		
	(d) nozzle guide vanes		
	(e) blades		
64.12.6	Describe the principles of operation and characteristics of the following turbine blade design types—		
	(a) impulse		
	(b) impulse-reaction		
	(c) reaction		
64.12.8	State which type of turbine blade design is most common and explain why this type of blade is preferred.		
64.12.10	Identify factors which limit the power available from the turbine section.		
64.12.12	Describe multi-stage turbines.		
64.12.14	State why turbine assemblies increase in diameter towards the rear of the engine.		
64.12.16	Define turbine blade creep and state the causal factors for this condition.		
64.14 Turbine E	Engine Exhaust Section		
64.14.2	State the function of the exhaust section.		
64.14.4	Describe the exhaust gas flow through convergent and divergent passages.		
64.14.6	State the purpose, and principles of operation of the following exhaust nozzle types—		
	(a) convergent		
	(b) convergent-divergent		
64.16 Thrust Re	eversers		

64.16.2

Describe thrust reversal

64.16.4	Explain the purpose and operation of thrust reversal.		
64.16.6	Describe the various types of thrust reverser.		
64.18 Turbine Eng	gine Fuel Systems		
64.18.2	Describe the distinguishing features of aviation turbine fuel (AVTUR/Jet A1).		
64.18.4	Compare and differentiate between AVGAS and turbine engine fuel (including Biojet) and describe methods of reducing the likelihood of fuelling with the wrong type.		
64.18.6	State the differences between the various types of turbine engine fuel (including Biojet) and identify their common usage names.		
64.18.8	Describe the function of the following turbine engine fuel system components—		
	(a) fuel control unit (hydro pneumatic, hydro mechanical and electro- hydro mechanical)		
	(b) fuel heater		
	(c) governors and limiting devices		
	(d) engine driven fuel pumps		
64.18.10	State the ideal fuel/air ratio for a turbine engine.		
64.18.12	Describe the following properties in relation to turbine engine fuels—		
	(a) specific gravity		
	(b) fire hazard		
	(c) fuel icing		
64.18.14	State the effect of a change in specific gravity with respect to weight of fuel.		
64.18.16	Describe the purposes of anti-icing and anti-microbiocidal additives in turbine engine fuels.		
64.18.18	Describe the susceptibility of turbine fuels to water contamination over other types of aviation fuels.		
64.18.20	Describe methods of fuel system contamination detection.		
64.18.22	Explain the precautions which can be taken to avoid fuel contamination with water and other impurities.		
64.20 Turbine Eng	gine Lubrication Systems		
64.20.2	Describe the basic principles of operation of typical turbine engine lubrication systems.		
64.20.4	Describe the function and principles of operation of the following turbine engine lubrication system components—		

- (a) oil cooler
- (b) oil-fuel heat exchangers
- (c) oil filters/screens (pressure and scavenge)
- (d) oil system chip detectors and magnetic plugs
- (e) valves (bypass/check/relief)
- 64.20.6 Differentiate between a wet sump and a dry sump oil system.

64.22 Turbine Engine Starting; Ignition; Relight; and Shutdown

64.22.2	Describe general procedures for starting and shutting down a turbine engine.		
64.22.4	Describe the cockpit indications of a positive light-up during start.		
64.22.6	Describe what is meant by self-sustaining rpm and how this is achieved.		
64.22.8	Describe what is meant by a "blow out" or "motoring" cycle of the engine and state when this would be carried out.		
Describe the causes, indications, effects and remedial actions for the followater defects—			
	(a) hung start		
	(b) hot start		
	(c) wet start		
	(d) tail pipe fire		
64.22.12	Describe why turbine engines are often fitted with separate low and high energy ignition systems.		
64.22.14	Describe the conditions under which the ignition system(s) would be turned on.		

Describe the requirement and general procedures for an engine relight in the air.

64.22.16

64.24 Turbine Engine Air Cooling and Sealing

- 64.24.2 Describe the requirement for cooling and sealing of turbine engine components.
- 64.24.4 Describe the uses of compressor bleed air for cooling and sealing.
- 64.24.6 Describe how turbine blades, discs and nozzles are cooled using compressor

bleed air.

64.26 Turbine Engine Indicating and Instrumentation

- 64.26.2 Describe the following types of turbine engine indicators and instrumentation including their function and basic principles of operation—
 - (a) engine rpm
 - (b) engine pressure ratio
 - (c) engine torque
 - (d) fuel flow
 - (e) pressure indicators
 - (f) temperature indicators
 - (g) vibration indicators
- 64.26.4 State the meaning of the following terms—
 - (a) EPR
 - (b) N1 (fan speed)
 - (c) ITT
 - (d) EGT

64.28 Turbine Engine Performance

Define the following terms and describe the relationship between them, and their application to engine operation—

- (a) power
- (b) thrust
- (c) torque
- (d) gross thrust
- (e) net thrust
- (f) thrust horsepower (THP)
- (g) shaft horsepower (SHP)
- (h) equivalent shaft horsepower (ESHP)

	(i)	specific fuel consumption (SFC)
64.28.4	Describe the	effect of the following factors on turbine engine performance—
	(a)	airspeed
	(b)	ram effect
	(c)	altitude
	(d)	pressure
	(e)	temperature
	(f)	humidity
	(g)	bleed air
64.28.6	Describe the	methods of thrust augmentation.
64.28.8	Describe the	propulsive efficiency of the following types of turbine engine-
	(a)	turboprop
	(b)	high bypass ratio turbofan
	(c)	low bypass ratio turbofan
	(d)	geared turbofan
	(e)	turbojet
64.28.10	State the cau engines.	ses of the reduction in SFC with increasing airspeed in turboprop